
NASA-TM-11226b

c_, _,_:" .

,f;:_/ -.'{ . .<

NII A
National Aeronautics and
Space Administration

Ames Research Center
Moffett Field, California 94035

ARC 275 (Rev Feb 81)

Performance Results for Two of the NAS Parallel Benchmarks

David H. Bailey and Paul O. Frederickson

RNR Technical Report RNR-91-019

June 3, 1991

Abstract

Two problems from the recently published "NAS Parallel Benchmarks" have been im-

plemented on three advanced parallel computer systems. These two benchmarks are the

following: (1) an "embarrassingly parallel" Monte Carlo statistical calculation and (2) a
Poisson partial differential equation solver based on three-dimensional fast Fourier trans-

forms. The first requires virtually no interprocessor communication, while the second has

a substantial communication requirement.

This paper briefly describes the two problems studied, discusses the implementation

schemes employed, and gives performance results on the Cray Y-MP, the Intel iPSC/860
and the Connection Machine-2.

Bailey is with the Numerical Aerodynamic Simulation (NAS) Systems Division at

NASA Ames Research Center, Moffett Field, CA 94035. Frederickson is with the Re-

search Institute for Advanced Computer Science (RIACS) at NASA Ames. Frederickson's

work was funded by the NAS Systems Division via Cooperative Agreement NCC 2-387
between NASA and the Universities Space Research Association.

1. Introduction

The NAS Parallel Benchmarks [3] is a new set of benchmarks that have been devel-

oped for the performance evaluation of highly parallel supercomputers. These benchmarks

consist of five "parallel kernels", and three simulated computational fluid dynamics (CFD)

application benchmarks. Together they mimic the computation and data movement char-

acteristics of many large scale aerophysics applications.

These benchmarks were developed out of the realization that none of the conventional

approaches to the performance benchmarking of supercomputers is appropriate for highly

parallel systems. The popular "kernel" benchmarks that have been used for traditional

vector supercomputers, such as the Livermore Loops, the LINPACK benchmark and the

original NAS Kernels, are clearly inappropriate for the performance evaluation of highly

parallel machines. In addition to the dubious meaning of the actual performance numbers,

the computation and memory requirements of these programs do not do justice to the

vastly increased capabilities of the new parallel machines, particularly those systems that

will be available by the mid-1990s.

On the other hand, a full scale scientific application is similarly unsuitable. First of

all, porting a large application to a new parallel computer architecture requires a major

effort, and it is usually hard to justify a major research task simply to obtain a benchmark

number. For example, there are as yet few results for the PERFECT benchmark suite on

highly parallel systems.

An alternative to conventional benchmark strategies is to specify a "paper and pencil"

benchmark, i.e. to define a set of problems only algorithmically. Even the input data is

specified only on paper. Naturally, the problem has to be specified in sufficient detail that

a unique solution exists, and the required output has to be brief yet detailed enough to

certify that the problem has been solved correctly. The person or persons implementing

the benchmarks on a given system are expected to solve the various problems in the

most appropriate way for the specific system. The choice of data structures, algorithms,

processor allocation and memory usage are all (to the extent allowed by the specification)
left open to the discretion of the implementer.

The NAS Parallel Benchmarks were constructed on this model. They consist of eight

separate benchmark problems:

1. An "embarrassingly parallel" Monte-Carlo statistical computation.

2. A simplified multigrid partial differential equation (PDE) solver.

3. A conjugate gradient eigenvalue computation that involves unstructured matrices.

4. A Poisson PDE solver that employs three-dimensional fast Fourier transforms (FFTs).

5. An integer sort problem, which is used in some particle codes.

6. The LU solver of a simulated CFD application.

7. The scalar pentadiagonal solver of a simulated CFD application.

2

8. The block tridiagonal solver of a simulated CFD application.

There are several basic requirements on implementations: (1) 64-bit floating point

arithmetic must be used, (2) programs must be coded in Fortran-77 or C, although a

variety of commonly used parallel extensions are allowed, (3) except for a short list of

common library functions and intrinsics, assembly language routines may not be used for

any computations. Otherwise programmers are free to utilize algorithms and language

constructs that give the best performance possible on the particular system being studied.

The detailed definitions of the problems to be solved, as well as the specific language rules

and timing procedures are given in [3].

This paper describes the implementation of problems 1 and 4 on the following three

systems: (1) a Cray Y-MP with eight processors, (2) an Intel iPSC/860 system with 128

processors, and (3) a Connection Machine-2 with 32,768 processors.

2. The "Embarrassingly Parallel" Benchmark

In this problem, a large number of pairs of Gaussian random deviates are generated

according to a specific scheme, and the number of pairs lying in successive square annuli

are tabulated. The only essential requirement for communication in a multiprocessor im-

plementation is to collect the counts at the end. This problem represents the essence of

many Monte Carlo physics calculations, and it is also typical of such diverse applications

as the analysis of supercomputer memory systems [2]. Another reason for its inclusion in

the NAS Parallel Benchmarks is to provide a contrast with other problems, such as the

3-D FFT PDE solver, which require substantial interprocessor communication.

The following is a brief statement of this problem. The complete statement, plus

references, are given in [3].

Set n = 22s and s = 271828183. Generate the pseudorandom floating point values rj in

the interval (0, 1) for 1 < j < 2n using the scheme described below. Then for 1 < j < n

set xj = 2r2j_l - 1 and yj = 2r2j - 1. Thus xj and yj are uniformly distributed on the

interval (- 1, 1).

2 2 < 1. If not, rejectNext set k = 0, and beginning with j = 1, test to see if tj = xj + yj _

this pair and proceed to the next j. If this inequality holds, then set k _-- k + 1, Xk =

xj¢(-21ogtj)/tj and Yk = yj¢(--21ogtj)/tj, where log denotes the natural logarithm.
Then Xk and Yk are independent Gaussian deviates with mean-zero and variance one.

Approximately n_r/4 pairs will be constructed in this manner.

Finally, for 0 _ 1 _< 9 tabulate Qz as the count of the pairs (Xk,]Irk) that lie in the

square annulus l < max(lXk], IYkl) < l + 1, and output the ten Qz counts. Each of the ten

Ql counts must agree exactly with reference values.

The 2n uniform pseudorandom numbers rj mentioned above are to be generated ac-

cording to the following scheme: Set a = 513 and let x0 = s be the specified initial "seed".

Generate the integers xk for 1 _< k _< 2n using the linear congruential recursion

xk+l = axk (mod246)

3

and return the numbers rk = 2-46Xk aS the results. Observe that 0 < rk < 1 and the rk
are very nearly uniformly distributed on the unit interval.

An important feature of this pseudorandom number generator is that any particular

value Xk of the sequence can be computed directly from the initial seed 8 by using the binary

algorithm for exponentiation, taking remainders modulo 246 after each multiplication. The

importance of this property for parallel processing is that numerous separate segments of a

single, reproducible sequence can be generated on separate processors of a multiprocessor

system. Many other widely used schemes for pseudorandom number generation do not

possess this important property.

3. The 3-D FFT PDE Benchmark

In this problem, a certain Poisson partial differential equation (PDE) is solved using

three-dimensional fast Fourier transform (FFT) computations. In contrast to the "embar-

rassingly parallel" problem, this application requires substantial interprocessor communi-

cation and is thus a good test of network performance.

The following is a brief description of this benchmark. For full details, see [3].
Consider the PDE

O (x,t)
cOt

- V2u(x,t)

where x is a position in 3-dimensional space. When a Fourier transform is applied to each
side, this equation becomes

cot
_ -4o, 21zl2v(z,t)

where v(z,t) is the Fourier transform of u(x,t). This has the solution

V(z,t) -_- e-4c_r2]zl2tV(z,O)

Now consider the discrete version of the original PDE. Following the above, it can be

solved by computing the forward 3-D discrete Fourier transform (DFT) of the original

state array u(x, 0), multiplying the results by certain exponentials, and then performing
an inverse 3-D DFT.

The specific problem to be solved in this benchmark is as follows. Set nl = 256, n2 =

256, and n3 = 128. Generate 2nln2n3 64-bit pseudorandom floating point values using

the pseudorandom number generator in the previous section, starting with the initial seed

314159265. Then fill the complex array Ui,j,k, 0 < i < nl, 0 _< j < n2, 0 < k < n3, with

this data, where the first dimension varies most rapidly as in the ordering of a 3-D Fortran

array. A single complex number entry of U consists of two consecutive pseudorandomly

generated results. Compute the forward 3-D DFT of U, using a 3-D fast Fourier transform

(FFT) routine, and call the result V. Set c_ = 10 -6 and set t = 1. Then compute

Wis,k = e-4_'_2(12+32+k2)*Vi,j,k

where _ is defined as i for 0 < i < nl/2 and i- nl for nl/2 < i < ni. The indices _ and

are similarly defined with n2 and n3. Then compute an inverse 3-D DFT on W, using a

3-D FFT routine, and call the result the array X. Finally, compute the complex checksum
]_'_1023

,=0 Xq,,,swhereq=i (modnl), r =3i (modn2) ands =5i (modn3). After the

checksum for this t has been output, increment t by one. Then repeat the above process,

from the computation of W through the incrementing of t, until the step t = N has been

completed. In this benchmark, N = 6. The V array and the array of exponential terms

for t = 1 need only be computed once. Note that the array of exponential terms for t > 1

can be obtained as the t-th power of the array for t = 1.

The rules of the NAS Parallel Benchmarks require that all problems be implemented

in Fortran-77 or C, with some reasonable parallel extensions, and prohibit the usage of

assembly language computations. However, one exception to this is that vendor-supplied,

assembly-coded library routines may be employed to compute either individual 1-D FFTs

or complete 3-D FFTs. Thus this benchmark can be used to contrast the performance

one can obtain from a Fortran implementation to an implementation that employs certain
vendor library routines.

4. System Descriptions

The Cray Y-MP used in this study is the system in the NAS facility at NASA Ames

Research Center. It has eight processors and 128 million words of bipolar random access

memory. It also has 256 million words of solid state memory, but this was not utilized

here. Its clock period is 6 nanoseconds, so that its theoretical peak performance rate is

approximately 2.66 GFLOPS. These codes were compiled and executed under UNICOS
6.0 system software.

The Intel iPSC/860 used in this study, which is also at the NAS facility, employs Intel's

new RISC processor, the i860. The system has 128 nodes, each with eight megabytes

of memory, connected with in a hypercube network. The i860 has a theoretical peak

performance of 60 MFLOPS (64 bit), so that the theoretical peak performance of the

system is some 7.68 GFLOPS. In practice it is hard to even approach this rate, even from

assembly code [5]. The codes were compiled using the Portland Group Fortran compiler,
version 1.3a.

The NAS CM-2 has 32,768 bit-serial processors together with 1,024 Weitek 64-bit float-

ing point processors and four gigabytes of memory. Its theoreticM peak performance is some

14 GFLOPS, although again few codes can approach this rate. The 1.0 system software,

which includes the 1.0 slicewise Fortran compiler and CMSSL library, was used for the
Fortran runs in this study.

5. Implementation Techniques

Curiously, the principal algorithmic challenge in implementing the embarrassingly par-

allel benchmark problem was in devising a scheme suitable for high performance on a Cray

supercomputer. In contrast, straightforward implementations sufficed on the Intel and
CM-2 systems.

The principal difficulty on the Cray is that the linear congruential scheme presented

above for generating uniform pseudorandom numbers is not directly vectorizable. One

solution, which was employed here, is to generate these numbers in batches of 64, which is

the hardware vector length of the Cray systems. This may be done by first computing the

multiplier _ = a 64 (mod 246). The first 64 elements of the sequence xk are computed by

the scalar algorithm. Thereafter the remainder are computed by the recursion

Xk+64 : axk (rood 2 46)

The acceptance-rejection operation in the generation of the Gaussian deviates, as well

as the accumulation of counts, also present difficulties for vector computations, but these

were resolved by reasonably straightforward means.

In the 3-D FFT PDE problem, the principal issue is the selection of an efficient means

to compute 3-D FFTs. On the Cray, complex arrays of size nl x n2 x n3, where nl, n2 and

n3 are powers of two, were declared with physical dimensions (nl + 1, n2 + 1, n3 + 1). Then

transforms were performed in all three dimensions, with vectorization in the plane not

transformed. This is efficient on the Cray since the strides of the resulting array accesses

are always either one or else one greater than a power of two. Either way, no bank conflicts

result. The vectorized FFTs were based on a 1-D FFT algorithm described in [1].

Multiprocessing on the Cray was achieved by inserting a few autotasking directives.

The FFTs were performed by an all-Fortran routine as described above and also by call-

ing Cray's new library routine CFFT3D. This routine permits both single processor and
multiprocessor runs to be made.

On the Intel, accessing arrays in each of three dimensions is of course not practical

because in at least one dimension, the accesses will be across processors. Thus the following
alternate scheme was employed:

1. n2na 1-D FFTs of size n 1 are performed, each on data vectors entirely contained in

a single processing node (in fact, within the cache of the processor).

2. nln3 1-D FFTs of size n2 are performed. These these data vectors are also contained

within individual nodes, since n3 never exceeds the number of nodes used.

3. The resulting complex data array is then transposed to a n3 X nl x n2 array by means
of a complete exchange operation.

4. nln2 1-D FFTs of size n3 are performed, again on local node data.

5. The resulting complex data array is transposed back to a nl x n2 x n3 array.

Note that steps 3 and 5 require a "complete exchange" operation, i.e. the data in each

processing node is partitioned into p sections, where p is the number of processors, and then

each processor sends each of its p sections to the appropriate target processor. Since this

step requires substantial interprocessor communication, it is essential that it be as efficient

as possible. Recently Bokhari [4] compared a number of schemes for this operation. The

scheme used here is the one described in that paper as the forced, pair-wise, synchronized
scheme.

Recently Kuck and Associates completed a package of assembly-coded mathematical

routines for i860-based systems, under contract to Intel. These routines included all of the

basic linear algebra subroutines (BLAS), plus some one-dimensional FFT routines. The

double precision 1-D complex-to-complex FFT routine from this package was incorporated

into the benchmark code, so that results have been obtained using both this routine and
an all-Fortran version.

One scheme attempted on the CM-2 is similar to that employed on the Cray, except

that there is no need for array dimensions to be one greater than powers of two. Another

attempted scheme is similar to the algorithm employed for the Intel system. Unfortunately,

for reasons not yet fully understood as of the date of this paper, neither scheme exhibits

even remotely respectable performance -- evidently significant parts of the computation are

not really being performed in parallel on the CM-2. However, TMC has recently provided

a rather efficient routine for one-dimensional and multi-dimensional FFTs in the CMSSL

library. Thus this routine was employed in the runs cited below.

One important element of the tuning for the CM-2 implementation was the specification
of the layout of the 3-D array to be transformed. This was done with the directive

cmf$ layout Xl(:serial, lO00:send, l:send)

The authors are indebted to Robert Krawitz of TMC for this suggestion.

All of the implementations for this benchmark employ ordered FFTs. Some improve-

ment in performance may be possible by using unordered (i.e. bit reversed) FFTs. Future

benchmark efforts will explore this possibility.

6. Performance Results

The embarrassingly parallel benchmark was run for three problem sizes: n = 224, 22s

and 23°. All three systems, including the Cray, which is known for difficulties with numer-

ical inaccuracies, obtained precisely correct counts, apparently confirming that billions of

floating operations were performed correctly (within acceptable tolerance limits) and that

the library routines SQRT and LOG returned satisfactorily accurate results.

Performance results for this benchmark are listed in Table 1. In accordance with the

rules for the NAS Parallel Benchmarks, run times are the elapsed time of day from start of

execution to completion, and MFLOPS figures are for 64-bit data, with operation counts

as given in [3], which in turn are based on some standard figures for the SQRT and LOG

functions. In cases where two or more runs were possible with the same system on the

same size problem, but with different numbers of processors, "speedup" figures are shown

in the sixth column. These numbers are normalized based on the run with the smallest

number of processors.

Not surprisingly, these runs exhibit almost perfectly linear speedups. What also scales

linearly is the run time versus the size of the problem -- timings for equivalent systems with
n = 230 are almost exactly four times the timings for n = 22s. The results indicate that on

7

Problem
System Size
Y-MP 2 24

Intel

CM-2

Y-MP 22s

Intel

CM-2

Y-MP 23o

Intel

CM-2

No.

Proc.

1 9.41

8 1.25

4 122.58

8 61.30

16 31.60

32 15.77

64 7.67

128 3.84

8K 13.11

16K 6.55

1 150.10

8 20.10

32 245.20

64 122.61

128 61.32

8K 201.04

16K 100.84

32K 50.92

1 603.50

8 80.63

128 245.21

32K 202.94

Time

(sec.) MFLOPS Speedup

147.40

1109.60

11.32

22.63

43.89

87.95

180.83

361.20

105.80

211.76

147.90

1104.48

90.54

181.06

362.O3

110.44

220.15

435.98

147.14

1101.33

362.14

437.57

1.00

7.53

1.00

2.00

3.88

7.77

15.98

31.92

1.00

2.00

1.00

7.47

1.00

2.00

4.00

1.00

2.00

3.95

1.00

7.48

Table 1: Embarrassingly Parallel Benchmark Performance Results

this type of problem, the full Intel system is roughly equivalent to 2.5 Y-MP processors,

and that the full CM-2 is roughly equivalent to three Y-MP processors.

It is interesting to note that these results are 41%, 4.7% and 3.1% of the peak perfor-

mance rates of the Y-MP, the Intel and the CM-2, respectively. The low percentages on

the Intel and CM-2 are in spite of a minimal communication requirement. These figures

thus underscore that there is considerable room for improvement in the performance of the

Intel and CM-2 Fortran compilers and library intrinsics.

The 3-D FFT PDE benchmark was run with the problem sizes 64 x 64 x 64, 128 x

128 x 128 and 256 x 256 x 128. All three systems produced checksums at the end of each

iteration that were correct to the required 12 significant figures. Timing results are shown

in Table 2. "F" or "L" in the Code column denotes an all-Fortran or a library FFT (a 1-D

FFT for the Intel, and a 3-D FFT for the Cray and the CM-2).

Timings on the CM-2 were problematic for this benchmark. The CM timing routines

output two run times: "CM elapsed time" and "CM busy time". The former is the elapsed

time of day between start of execution and end, and corresponds to the definition of run

time for the NAS Parallel Benchmarks. The latter excludes time when the CM is not

actually busy with computation, such as when it is exchanging data with the front end
system.

In the first benchmark, as well as in a majority of applications, these times are not

greatly different. However, in the 3-D FFT PDE benchmark they are greatly different,

especially in the 64x 64 x 64 problem size. This difference is apparently due to time

spent in transferring data and program code from the front end to the CM-2 as part of

initialization for the library FFT routine. Thinking Machines plans to greatly reduce this

initialization time in future software releases. For this reason, and the fact that the CM

busy timings scale more predictably with problem size and number of processors, the CM

busy timings were also included in the table. The CM elapsed and CM busy timings are
distinguished by "E" or "B" in the Code column.

The results for this benchmark definitely indicate sub-linear speedup with increasing

numbers of processors. On the 643 problem the Intel system (with the library 1-D FFT

routine) is only 6.5 times faster with 32 processors than with 4. The CM-2 is somewhat

better: on the 1283 problem, the CM-2 is 3.8 times faster with 32K processors than with 8K.

Curiously, the all-Fortran Cray program exhibited more nearly linear speedups and actually

out-performed the library FFT-based program with eight processors on the 256 × 256 × 128

problem.

However, it should be emphasized that speedup figures can be easily misinterpreted.

For example, one reason that the speedup figures are not worse on the Intel is that the

current Intel Fortran compiler is still not achieving anywhere near the performance that can

be obtained through assembly coding. The single node performance rate for the all-Fortran

code on the Intel system is only about 3 MFLOPS, whereas the peak 64-bit performance

of the i860 is 60 MFLOPS. When a more powerful compiler becomes available, then these

speedup figures can be expected to fall off more rapidly, because the application will be

dominated to a greater extent by communication costs.

System

Y-MP

Intel

CM-2

Y-MP

Intel

CM-2

Y-MP

Intel

CM-2

Code

F

L

F

F

F

F

L

L

L

L

LE

LB

LE

LB

F

L

F

F

F

L

L

L

LE

LB

LE

LB

LE

LB

F

F

L

L

F

L

LE

LB

LE

LB

Table

Problem No.

Size Proc.

64 x 64 x 64 1 1.21

1 0.82

4 17.08

8 9.01

16 4.77

32 2.51

4 11.87

8 6.39

16 3.41

32 1.84

8K 65.57

8K 3.61

16K 60.62

16K 1.90

128 x 128 x 128 1 10.27

1 7.14

32 19.32

64 9.95

128 5.45

32 13.70

64 7.14

128 4.05

8K 57.69

8K 25.98

16K 79.34

16K 13.42

32K 72.92

32K 7.08

256 x 256 x 128 1 39.23

8 5.17

1 29.31

8 6.15

128 22.22

128 15.13

16K 110.88

16K 53.41

32K 87.87

32K 27.63

Time

(sec.) MFLOPS Speedup

156.85

231.46

11.11

21.06

39.78

75.68

15.99

29.70

55.68

103.29

2.89

52.58

3.13

99.89

169.33

243.56

90.02

174.82

319.34

126.89

243.67

429.77

30.14

66.94

21.92

129.58

1.74

245.62

192.23

1458.61

257.28

1226.18

339.44

498.45

68.01

141.19

85.82

272.93

1.00

1.90

3.58

6.81

1.00

1.86

3.48

6.46

1.00

1.90

1.00

1.00

1.94

3.54

1.00

1.92

3.39

1.00

1.94

1.90

1.00

7.59

1.00

4.77

1.00

1.93

2: 3-D FFT PDE Benchmark Performance Rates

10

The performancerates on the largest problem sizeindicate that the full Intel system
is roughly equivalentto 1.9Y-MP processors(comparinglibrary FFT timings), and that
the CM-2 is roughly equivalentto one Y-MP processor(comparingthe CM busy timings
with the Y-MP library rates). The fact that theseratios arenot asfavorableto the highly
parallel systemson the 3-D FFT PDE benchmarkas they were on the embarrassingly
parallel benchmarkis clearlydueto the demandingcommunicationrequirementin the 3-D
FFT.

Conclusions

With some algorithmic experimentation and implementation tuning, all three of the

tested systems were able to obtain "respectable" performance rates on these two benchmark

problems. However, the Intel and CM-2 systems, while showing promise, are not yet

demonstrating on these problems the consistently high level of sustained performance that

users of Cray systems have come to expect (comparing full systems to full systems).

It is true that the performance of highly parallel computers on a particular application

can in some cases be significantly improved by employing alternate algorithms that feature

less costly communication. However, in many cases, including the 3-D FFT PDE bench-

mark and other problems that require computations in each dimension of three dimensional

arrays, only modest improvement can be achieved in this manner, since a certain amount of

communication is unavoidable. Also, many CFD applications and other hyperbolic PDE

problems must employ implicit algorithms in order to obtain a solution in a reasonable

amount of time, and these implicit algorithms require substantial long-distance commu-

nication. What this means is that the usability of a highly parallel system will be quite

limited if it cannot perform well on communication intensive problems. Thus it is hoped

that the next generation of highly parallel supercomputers will feature greatly increased

communication performance.

References

o

.

.

Bailey, D. H., "A High-Performance FFT Algorithm for Vector Supercomputers,

International Journal of Supercomputer Applications, vol. 2 (1988), p. 82 - 87.

Bailey, D. H., "Vector Computer Memory Bank Contention", IEEE Transactions on

Computers, voh C-36, no. 3 (Mar. 1987), p. 293 - 298.

Bailey, D. H., Barton, J. T., Lasinski, T. A, and Simon, H. D., eds., "The NAS

Parallel Benchmarks", RNR Technical Report RNR-91-002, NASA Ames Research

Center, January 1991.

°

o

Bokhari, S. H., "Complete Exchange on the iPSC-860", ICASE Report No. 91-4,
NASA Langley Research Center, January 1991.

Lee, K., "On the Floating Point Performance of the i860 Microprocessor", RNR

Technical Report RNR-90-019, NASA Ames Research Center, October 1990.

11

